3.5.14 \(\int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx\) [414]

3.5.14.1 Optimal result
3.5.14.2 Mathematica [C] (verified)
3.5.14.3 Rubi [A] (verified)
3.5.14.4 Maple [C] (verified)
3.5.14.5 Fricas [B] (verification not implemented)
3.5.14.6 Sympy [F]
3.5.14.7 Maxima [F]
3.5.14.8 Giac [F]
3.5.14.9 Mupad [F(-1)]

3.5.14.1 Optimal result

Integrand size = 23, antiderivative size = 286 \[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\frac {b \left (a^2-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\sinh (c+d x)}\right )}{\sqrt {2} \left (a^4+b^4\right ) d}-\frac {b \left (a^2-b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\sinh (c+d x)}\right )}{\sqrt {2} \left (a^4+b^4\right ) d}+\frac {a^3 \arctan (\sinh (c+d x))}{\left (a^4+b^4\right ) d}+\frac {a b^2 \log (\cosh (c+d x))}{\left (a^4+b^4\right ) d}-\frac {2 a b^2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )}{\left (a^4+b^4\right ) d}-\frac {b \left (a^2+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\sinh (c+d x)}+\sinh (c+d x)\right )}{2 \sqrt {2} \left (a^4+b^4\right ) d}+\frac {b \left (a^2+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\sinh (c+d x)}+\sinh (c+d x)\right )}{2 \sqrt {2} \left (a^4+b^4\right ) d} \]

output
a^3*arctan(sinh(d*x+c))/(a^4+b^4)/d+a*b^2*ln(cosh(d*x+c))/(a^4+b^4)/d-2*a* 
b^2*ln(a+b*sinh(d*x+c)^(1/2))/(a^4+b^4)/d-1/2*b*(a^2-b^2)*arctan(-1+2^(1/2 
)*sinh(d*x+c)^(1/2))/(a^4+b^4)/d*2^(1/2)-1/2*b*(a^2-b^2)*arctan(1+2^(1/2)* 
sinh(d*x+c)^(1/2))/(a^4+b^4)/d*2^(1/2)-1/4*b*(a^2+b^2)*ln(1+sinh(d*x+c)-2^ 
(1/2)*sinh(d*x+c)^(1/2))/(a^4+b^4)/d*2^(1/2)+1/4*b*(a^2+b^2)*ln(1+sinh(d*x 
+c)+2^(1/2)*sinh(d*x+c)^(1/2))/(a^4+b^4)/d*2^(1/2)
 
3.5.14.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.19 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.80 \[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\frac {3 \left (-2 \sqrt {2} b^3 \arctan \left (1-\sqrt {2} \sqrt {\sinh (c+d x)}\right )+2 \sqrt {2} b^3 \arctan \left (1+\sqrt {2} \sqrt {\sinh (c+d x)}\right )+4 a^3 \arctan (\sinh (c+d x))+4 a b^2 \log (\cosh (c+d x))-8 a b^2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )-\sqrt {2} b^3 \log \left (1-\sqrt {2} \sqrt {\sinh (c+d x)}+\sinh (c+d x)\right )+\sqrt {2} b^3 \log \left (1+\sqrt {2} \sqrt {\sinh (c+d x)}+\sinh (c+d x)\right )\right )-8 a^2 b \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\sinh ^2(c+d x)\right ) \sinh ^{\frac {3}{2}}(c+d x)}{12 \left (a^4+b^4\right ) d} \]

input
Integrate[Sech[c + d*x]/(a + b*Sqrt[Sinh[c + d*x]]),x]
 
output
(3*(-2*Sqrt[2]*b^3*ArcTan[1 - Sqrt[2]*Sqrt[Sinh[c + d*x]]] + 2*Sqrt[2]*b^3 
*ArcTan[1 + Sqrt[2]*Sqrt[Sinh[c + d*x]]] + 4*a^3*ArcTan[Sinh[c + d*x]] + 4 
*a*b^2*Log[Cosh[c + d*x]] - 8*a*b^2*Log[a + b*Sqrt[Sinh[c + d*x]]] - Sqrt[ 
2]*b^3*Log[1 - Sqrt[2]*Sqrt[Sinh[c + d*x]] + Sinh[c + d*x]] + Sqrt[2]*b^3* 
Log[1 + Sqrt[2]*Sqrt[Sinh[c + d*x]] + Sinh[c + d*x]]) - 8*a^2*b*Hypergeome 
tric2F1[3/4, 1, 7/4, -Sinh[c + d*x]^2]*Sinh[c + d*x]^(3/2))/(12*(a^4 + b^4 
)*d)
 
3.5.14.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3702, 7267, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (i c+i d x) \left (a+b \sqrt {-i \sin (i c+i d x)}\right )}dx\)

\(\Big \downarrow \) 3702

\(\displaystyle \frac {\int \frac {1}{\left (a+b \sqrt {\sinh (c+d x)}\right ) \left (\sinh ^2(c+d x)+1\right )}d\sinh (c+d x)}{d}\)

\(\Big \downarrow \) 7267

\(\displaystyle \frac {2 \int \frac {\sqrt {\sinh (c+d x)}}{\left (a+b \sqrt {\sinh (c+d x)}\right ) \left (\sinh ^2(c+d x)+1\right )}d\sqrt {\sinh (c+d x)}}{d}\)

\(\Big \downarrow \) 7276

\(\displaystyle \frac {2 \int \left (\frac {\sqrt {\sinh (c+d x)} a^3-b \sinh (c+d x) a^2+b^2 \sinh ^{\frac {3}{2}}(c+d x) a+b^3}{\left (a^4+b^4\right ) \left (\sinh ^2(c+d x)+1\right )}-\frac {a b^3}{\left (a^4+b^4\right ) \left (a+b \sqrt {\sinh (c+d x)}\right )}\right )d\sqrt {\sinh (c+d x)}}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (\frac {a b^2 \log \left (\sinh ^2(c+d x)+1\right )}{4 \left (a^4+b^4\right )}-\frac {a b^2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )}{a^4+b^4}+\frac {a^3 \arctan (\sinh (c+d x))}{2 \left (a^4+b^4\right )}+\frac {b \left (a^2-b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\sinh (c+d x)}\right )}{2 \sqrt {2} \left (a^4+b^4\right )}-\frac {b \left (a^2-b^2\right ) \arctan \left (\sqrt {2} \sqrt {\sinh (c+d x)}+1\right )}{2 \sqrt {2} \left (a^4+b^4\right )}-\frac {b \left (a^2+b^2\right ) \log \left (\sinh (c+d x)-\sqrt {2} \sqrt {\sinh (c+d x)}+1\right )}{4 \sqrt {2} \left (a^4+b^4\right )}+\frac {b \left (a^2+b^2\right ) \log \left (\sinh (c+d x)+\sqrt {2} \sqrt {\sinh (c+d x)}+1\right )}{4 \sqrt {2} \left (a^4+b^4\right )}\right )}{d}\)

input
Int[Sech[c + d*x]/(a + b*Sqrt[Sinh[c + d*x]]),x]
 
output
(2*((b*(a^2 - b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Sinh[c + d*x]]])/(2*Sqrt[2]*(a^ 
4 + b^4)) - (b*(a^2 - b^2)*ArcTan[1 + Sqrt[2]*Sqrt[Sinh[c + d*x]]])/(2*Sqr 
t[2]*(a^4 + b^4)) + (a^3*ArcTan[Sinh[c + d*x]])/(2*(a^4 + b^4)) - (a*b^2*L 
og[a + b*Sqrt[Sinh[c + d*x]]])/(a^4 + b^4) - (b*(a^2 + b^2)*Log[1 - Sqrt[2 
]*Sqrt[Sinh[c + d*x]] + Sinh[c + d*x]])/(4*Sqrt[2]*(a^4 + b^4)) + (b*(a^2 
+ b^2)*Log[1 + Sqrt[2]*Sqrt[Sinh[c + d*x]] + Sinh[c + d*x]])/(4*Sqrt[2]*(a 
^4 + b^4)) + (a*b^2*Log[1 + Sinh[c + d*x]^2])/(4*(a^4 + b^4))))/d
 

3.5.14.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3702
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x 
_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Si 
mp[ff/f   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p, x], x, 
 Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 
1)/2] && (EqQ[n, 4] || GtQ[m, 0] || IGtQ[p, 0] || IntegersQ[m, p])
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.5.14.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.24 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.68

method result size
default \(\frac {a \left (-\frac {b^{2} \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2}+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}-a^{2}\right )}{a^{4}+b^{4}}+\frac {b^{2} \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )+2 a^{2} \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4}+b^{4}}\right )}{d}+\frac {\operatorname {`\,int/indef0`\,}\left (\frac {b \sqrt {\sinh \left (d x +c \right )}\, \left (-b^{2} \sinh \left (d x +c \right )+a^{2}\right )}{-b^{4} \cosh \left (d x +c \right )^{4}+2 a^{2} b^{2} \cosh \left (d x +c \right )^{2} \sinh \left (d x +c \right )+\left (-a^{4}+b^{4}\right ) \cosh \left (d x +c \right )^{2}}, \sinh \left (d x +c \right )\right )}{d}\) \(195\)

input
int(sech(d*x+c)/(a+b*sinh(d*x+c)^(1/2)),x,method=_RETURNVERBOSE)
 
output
a/d*(-b^2/(a^4+b^4)*ln(tanh(1/2*d*x+1/2*c)^2*a^2+2*tanh(1/2*d*x+1/2*c)*b^2 
-a^2)+2/(a^4+b^4)*(1/2*b^2*ln(tanh(1/2*d*x+1/2*c)^2+1)+a^2*arctan(tanh(1/2 
*d*x+1/2*c))))+`int/indef0`(b*sinh(d*x+c)^(1/2)*(-b^2*sinh(d*x+c)+a^2)/(-b 
^4*cosh(d*x+c)^4+2*a^2*b^2*cosh(d*x+c)^2*sinh(d*x+c)+(-a^4+b^4)*cosh(d*x+c 
)^2),sinh(d*x+c))/d
 
3.5.14.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5671 vs. \(2 (256) = 512\).

Time = 1.15 (sec) , antiderivative size = 5671, normalized size of antiderivative = 19.83 \[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^(1/2)),x, algorithm="fricas")
 
output
Too large to include
 
3.5.14.6 Sympy [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\int \frac {\operatorname {sech}{\left (c + d x \right )}}{a + b \sqrt {\sinh {\left (c + d x \right )}}}\, dx \]

input
integrate(sech(d*x+c)/(a+b*sinh(d*x+c)**(1/2)),x)
 
output
Integral(sech(c + d*x)/(a + b*sqrt(sinh(c + d*x))), x)
 
3.5.14.7 Maxima [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )}{b \sqrt {\sinh \left (d x + c\right )} + a} \,d x } \]

input
integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^(1/2)),x, algorithm="maxima")
 
output
integrate(sech(d*x + c)/(b*sqrt(sinh(d*x + c)) + a), x)
 
3.5.14.8 Giac [F]

\[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )}{b \sqrt {\sinh \left (d x + c\right )} + a} \,d x } \]

input
integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^(1/2)),x, algorithm="giac")
 
output
integrate(sech(d*x + c)/(b*sqrt(sinh(d*x + c)) + a), x)
 
3.5.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}(c+d x)}{a+b \sqrt {\sinh (c+d x)}} \, dx=\int \frac {1}{\mathrm {cosh}\left (c+d\,x\right )\,\left (a+b\,\sqrt {\mathrm {sinh}\left (c+d\,x\right )}\right )} \,d x \]

input
int(1/(cosh(c + d*x)*(a + b*sinh(c + d*x)^(1/2))),x)
 
output
int(1/(cosh(c + d*x)*(a + b*sinh(c + d*x)^(1/2))), x)